PXI-6541 Specifications

Contents

PXI-6541 Specifications	
JVI 66/11 Spacifications	
「AI-0.341 3DECHICAUOHS	

PXI-6541 Specifications

These specifications apply to the PXI-6541 with 1 MBit, 8 MBit, and 64 MBit of memory per channel.

Note All values were obtained using a 1 m cable (SHC68-C68-D4 recommended). Performance specifications are not guaranteed when using longer cables.

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- Typical specifications describe the performance met by a majority of models.
- Nominal specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Specifications are **Typical** unless otherwise noted.

Conditions

Typical values are representative of an average unit operating at room temperature.

Channels

Data

Number of channels	32
Direction control	Per channel
Programmable Function Interface (PFI)	
Number of channels	4
Direction control	Per channel
Clock terminals	
Input	3
Output	2

Generation Channels

Channels	Data
	DDC CLK OUT
	PFI <03>
Signal type	Single-ended

Logic family, into 1 $M\Omega$	Low		High	
	Typical	Maximum	Minimum	Typical
1.8 V	0 V	0.1 V	1.7 V	1.8 V
2.5 V			2.4 V	2.5 V
3.3 V TTL (5 V TTL compatible)			3.2 V	3.3 V

Table 2. Voltage Levels, I = 100 μA

Output impedance		50 Ω , nominal
Maximum DC drive strength, by logic fami	ly	
1.8 V	±8 n	nA
2.5 V	±16 mA	
3.3 V	±32	mA
Data channel driver enable/disable control		Software-selectable: per channel
Channel power-on state 1		Drivers disabled, 50 kΩ input impedance
Output protection		
Range	0 V	to 5 V
Duration	Ind	efinite

Acquisition Channels

Channels	Data
	STROBE
	PFI <03>
Signal type	Single-ended

Logic family	Maximum Low Threshold	Minimum High Threshold
1.8 V	0.45 V	1.35 V
2.5 V	0.75 V	1.75 V

Logic family	Maximum Low Threshold	Minimum High Threshold
3.3 V TTL (5 V TTL compatible)	1.00 V	2.30 V

Table 2. Voltage Levels

Input impedance ^[2]	50 kΩ
Input protection range[3]	-1 V to 6 V

Timing

Sample Clock

Sources	 On Board clock (internal voltage-controlled crystal oscillator [VCXO] with divider) CLK IN (SMB connector) PXI_STAR (PXI backplane) STROBE (Digital Data & Control [DDC] connector; acquisition only) 	
_	Frequency range On Board clock 48 Hz to 50 MHz,	
CLKIN	CLK IN 20 kHz to 50 MHz	
PXI_STA	PXI_STAR 48 Hz to 50 MHz	
STROBE	STROBE 48 Hz to 50 MHz	

Relative delay adjustment

0.0 to 1.0 Sample clock periods Range

Resolution 10 ps

Exported Sample Clock

Destinations^[5] 1. DDC CLK OUT (DDC connector)

2. CLK OUT (SMB jack connector)

Delay (δ_C), for clock frequencies ≥25 MHz

0.0 to 1.0 Sample clock periods Range

1/256 of Sample clock period Resolution

Jitter, using On Board clock

Period 20 ps_{rms}, typical

Cycle-to-cycle 35 ps_{rms}, typical

Generation Timing

Channels	Data
	DDC CLK OUT
	PFI <03>
Data channel-to-channel skew	±600 ps, typical

Maximum data channel toggle rate	25 MHz
Data position modes	Sample clock rising edge
	Sample clock falling edge
	Delay from Sample clock rising edge
Generation data delay (δ_G), for clock free	guencies ≥25 MHz

0.0 to 1.0 Sample clock periods Range

1/256 of Sample clock period Resolution

Exported Sample clock offset (t _{CO})	Software-selectable: 0.0 ns or 2.5 ns (default)
Time delay from Sample clock (internal) to DDC connector (t _{SCDDC})	15 ns, typical

Exported Sample Clock Mode and Offset	Voltage Family	Time from Rising Clock Edge to Data Transition (t _{PCO})	Minimum Provided Setup Time (t _{PSU})	Minimum Provided Hold Time (t _{PH})
Noninverted, 2.5 ns	1.8 V	2.5 ns, typical	t _P - 5.5 ns	0.5 ns
	2.5 V		t _P - 4.5 ns	0.9 ns
	3.3 V/5.0 V		t _P - 4.5 ns	1 ns
Inverted, 0 ns	1.8 V	t _P /2	t _P /2 - 3.5 ns	(t _P /2) - 1.5 ns
	2.5 V		t _P /2 - 2.5 ns	
	3.3 V/5.0 V		t _P /2 - 2 ns	

Table 3. Generation Provided Setup and Hold Times

Note Provided setup and hold times account for maximum channel-to-channel skew and jitter.

The table values provided assume the following data position is set to Sample clock rising edge and the Sample clock is exported to the DDC connector and includes worst-case effects of channel-to-channel skew, inter-symbol interference, and jitter. Other combinations of exported Sample clock mode and offset are also allowed. The values presented are from the default case (noninverted clock with 2.5 s offset) and for providing balanced setup and hold times (inverted clock with 0 ns offset).

To determine the appropriate exported Sample clock mode and offset for your PXI-6541 generation session, compare the setup and hold times from the datasheet of your device under test (DUT) to the values in this table. Select the exported Sample clock mode and offset such that the PXI-6541 provided setup and hold times are greater than the setup and hold times required for the DUT.

Specified timing relationships apply at the DDC connector and at high-speed DIO accessory terminals. Any signal routing, clock splitting, buffers, or translation logic can impact this relationship. If multiple copies of DDC_CLK_OUT are necessary, use a zero buffer to preserve this relationship.

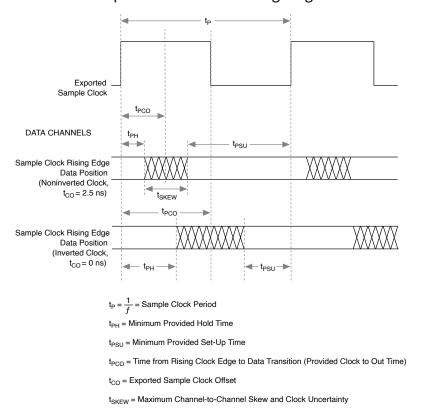
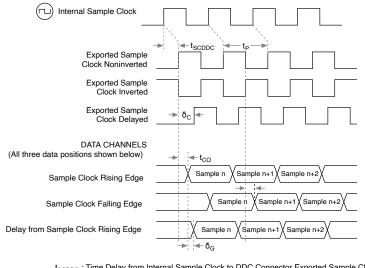



Figure 1. Generation Provided Setup and Hold Times Timing Diagram

Note Provided setup and hold times account for maximum channel-to-channel skew and jitter.

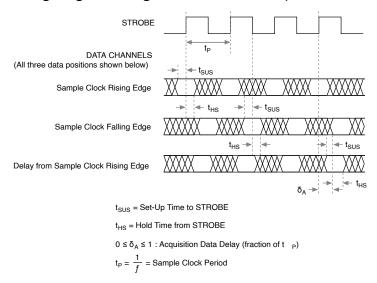
Figure 2. Generation Timing Diagram

 t_{SCDDC} : Time Delay from Internal Sample Clock to DDC Connector Exported Sample Clock

 $0 \le \delta_C \le 1$: Exported Sample Clock Delay (fraction of t_P)

 $0 \leq \delta_G \leq 1$: Generation Data Delay (fraction of t $_P)$

 $t_P = \frac{1}{f}$ = Sample Clock Period


 t_{CO} = Exported Sample Clock Offset; 0 or 2.5 ns, software-selectable

Acquisition Timing

Channels	Data
	STROBE
	PFI <03>
Channel-to-channel skew	±600 ps, typical
Data position modes	Sample clock rising edge
	Sample clock falling edge
	Delay from Sample clock rising edge
Setup and hold times	

To STROBE[6] Setup time (t _{SUS})		3.1 ns, max	kimum
Hold time (t _{HS})		2.7 ns, max	kimum
To Sample clock [7] Setup time (t_{SUSC}) Hold time (t_{HSC})			0.4 ns 0 ns
Time delay from DDC co clock (t _{DDCSC})	onnector data to internal	Sample	10 ns, typical
Acquisition data delay	(δ_A) , for clock frequence	ies ≥25 MH	z
Range	0.0 to 1.0 Samp	le clock peri	iods
Resolution	1/256 of Sample	e clock perio	od

Figure 3. Acquisition Timing Diagram Using STROBE as the Sample Clock

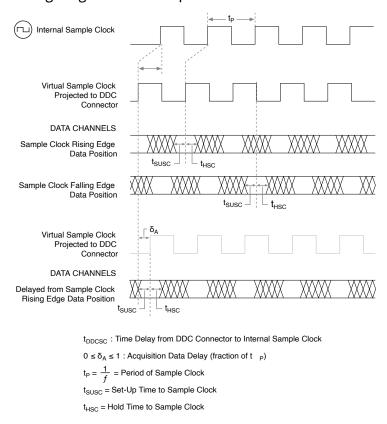


Figure 4. Acquisition Timing Diagram with Sample Clock Sources Other than STROBE

CLK IN

Connector	SMB jack
Direction	Input
Signal type	Single-ended
Destinations	 Reference clock for the phase-locked loop (PLL) Sample clock
Input coupling	AC

Input protection	±10 VDC
Input impedance	Software-selectable: 50 Ω (default) or 1 $k\Omega$
Minimum detectable pulse width	4 ns
Clock requirements	Free-running (continuous) clock

As Sample Clock

Voltage Range (V _{pk-pk})	Sine Wave	Square Wave	
	Frequency Range	Frequency Range	Duty Cycle
0.65 to 5.0	5.5 MHz to 50 MHz	20 kHz to 50 MHz	• 25% to 75%
1.0 to 5.0	3.5 MHz to 50 MHz	_	_
2.0 to 5.0	1.8 MHz to 50 MHz	_	_

Table 4. External Sample Clock Range

As Reference Clock

Frequency range	10 MHz ±50 ppm
Voltage range	$0.65V_{pk-pk}$ to $5.0V_{pk-pk}$
Duty cycle	25% to 75%

STROBE

Connector	DDC

Direction	Input
Destination	Sample clock (acquisition only)
Frequency range	48 Hz to 50 MHz
Duty cycle range[8]	25% to 75%
Minimum detectable pulse width[9]	4 ns
Voltage thresholds	Refer to <u>Acquisition Timing</u> in the Timing section.
Clock requirements	Free-running (continuous) clock
Input impedance ^[10]	Software-selectable: $50 \text{ k}\Omega$

PXI_STAR

Connector	PXI backplane
Direction	Input
Signal type	Single-ended
Destinations	 Sample clock Start trigger Reference trigger (acquisition sessions only)
	4. Advance trigger (acquisition sessions only)5. Pause trigger (generation sessions only)

	6. Script trigger <03> (generation sessions only)
Frequency range	48 Hz to 50 MHz
Clock requirements	Free-running (continuous) clock

CLK OUT

Connector	SMB jack	
Direction	Output	
Sources	 Sample clock (excluding STROBE) Reference clock (PLL) 	
Output impedance	50 Ω, nominal	
Electrical characteristics	Refer to <u>Generation Timing</u> in the Timing section.	
Maximum drive current		
At 1.8 V	8 mA	
At 2.5 V	16 mA	
At 3.3 V	32 mA	
Logic type	Generation logic family setting: 1.8 V, 2.5 V, 3.3 V	

DDC CLK OUT

Connector	DDC
Direction	Output
Source ^[11]	Sample clock
Electrical characteristics	Refer to <u>Generation Timing</u> in the Timing section.

Reference Clock (PLL)

Sources ^[12]	 PXI_CLK10, (PXI backplane) CLK IN (SMB jack connector) None (On Board clock not locked to a reference)
Destination	CLK OUT (SMB jack connector)
Lock time	400 ms, typical
Frequencies	10 MHz ±50 ppm
Duty cycle range	25% to 75%

Waveform

Memory and Scripting

•	The PXI-6541 uses Synchronization and Memory Core (SMC) technology in which waveforms and instructions share onboard memory. Parameters
	such as number of script instructions, maximum number of script

instructions, maximum number of waveforms in memory, and number of samples (S) available for waveform storage are flexible and user defined.

Onboard memory size[13]

1 Mbit/channel

Acquisition 1 Mbit/channel (4 MBytes total)

Generation 1 Mbit/channel (4 MBytes total)

8 Mbit/channel

Acquisition 8 Mbit/channel (32 MBytes total)

Generation 8 Mbit/channel (32 MBytes total)

64 Mbit/channel

Acquisition 64 Mbit/channel (256 MBytes total)

Generation 64 Mbit/channel (256 MBytes total)

Generation

Single waveform mode Generates a single waveform once, **n** times, or continuously.

Scripted $mode^{[14]}$ Generates a simple or complex sequences of waveforms.

Finite repeat count 1 to 16,777,216

Waveform quantum[15] Waveform must be an integer multiple of 2 S (samples).

Configuration	Sample Rate
	50 MHz
Single waveform	2 S
Continuous waveform	16 S
Stepped sequence	64 S
Burst sequence	256 S

Table 5. Generation Minimum Waveform Size, Samples (S) $\underline{^{[16]}}$

Acquisition Minimum record size[17]	1 S
Record quantum	1 S
Total records	2,147,483,647, maximum
Total pre-Reference trigger samples	0 up to full record
Total post-Reference trigger samples	0 up to full record

Triggers

Trigger Types	Sessions	Edge Detection	Level Detection
1. Start	Acquisition and generation	Rising or falling	_
2. Pause	Acquisition and generation	_	High or low
3. Script < 03>	Generation	Rising or falling	High or low
4. Reference	Acquisition	Rising or falling	_
5. Advance	Acquisition	Rising or falling	_

Sources	1. PFI 0 (SMB jack connector)
	2. PFI <13> (DDC connector)

	3. PXI_TRIG <07> (PXI backplane)
	4. PXI_STAR (PXI backplane)
	5. Pattern match (acquisition sessions only)
	6. Software (user function call)
	7. Disabled (do not wait for a trigger)
Destinations [18]	PFI 0 (SMB jack connector)
	PFI <13> (DDC connector)
	PXI_TRIG <06> (PXI backplane)

Minimum required trigger pulse width

Generation 30 ns

Acquisition Acquisition triggers must meet setup and hold time requirements.

Туре	Typical	Maximum
Start to Reference	57 S	64 S
Start to Advance	138 S	143 S
Reference to Reference	132 S	153 S

Table 6. Trigger Rearm Time

Delay from Pause trigger to Pause state ^[19]		
Generation sessions	32 Sampl	e clock periods + 150 ns
Acquisition sessions	Data synchronous	
Delay from trigger to digital data output		32 Sample clock periods + 160 ns

Events

Event Types	Sessions
1. Marker < 03>	Generation
2. Data Active	Generation
3. Ready for Start	Acquisition and generation
4. Ready for Advance	Acquisition
5. End of Record	Acquisition

Destinations[20]	1. PFI 0 (SMB jack connector)
	2. PFI <13> (DDC connector)
	3. PXI_TRIG <06> (PXI backplane)
Marker time resolution (placement)	Markers must be placed at an integer multiple of 2 S (samples).

Miscellaneous

Warm-up time	15 minutes
On Board clock characteristics (valid only whe	n PLL reference source is set to None)
Frequency accuracy	±100 ppm
Temperature stability	±30 ppm
Aging	±5 ppm first year

Software

Driver Software

Driver support for this device was first available in NI-HSDIO 1.2.

NI-HSDIO is an IVI-compliant driver that allows you to configure, control, and calibrate the PXI-6541. NI-HSDIO provides application programming interfaces for many development environments.

Application Software

NI-HSDIO provides programming interfaces, documentation, and examples for the following application development environments:

- LabVIEW
- LabWindows™/CVI™
- Measurement Studio
- Microsoft Visual C/C++
- .NET (C# and VB.NET)

NI Measurement Automation Explorer

NI Measurement Automation Explorer (MAX) provides interactive configuration and test tools for the PXI-6541. MAX is included on the NI-HSDIO media.

Power

VDC	Current Draw, Typical	Current Draw, Maximum
+3.3 V	1.6 A	1.8 A
+5 V	1.2 A	1.7 A
+12 V	0.25 A	0.4 A
-12 V	0.06 A	0.10 A

Total power	15 W, typical
	20.5 W, maximum

Physical Specifications

	Single 3U, CompactPCI slot, PXI compatible, 21.6 cm \times 2.0 cm \times 13.1 cm (8.5 in \times 0.8 in \times 5.16 in)
Weight	343 g (12.1 oz)

I/O Connectors

Label	Connector Type	Description
CLKIN		External Sample clock, external PLL reference input
PFI 0		Events, triggers
CLKOUT		Exported Sample clock, exported Reference clock
DIGITAL DATA & CONTROL	68-pin VHDCI connector	Digital data channels, exported Sample clock, STROBE, events, triggers

Environment

Note To ensure that the PXI-6541 cools effectively, follow the guidelines in the Maintain Forced Air Cooling Note to Users included with the PXI-6541 or available at <u>ni.com/manuals</u>. The PXI-6541 is intended for indoor use only.

Operating temperature	0 °C to 55 °C in all NI PXI chassis except the following: 0 °C to 45 °C when installed in an NI PXI-1000B or NI PXI-101x chassis

Operating relative humidity	10 to 90% relative humidity, noncondensing (meets IEC 60068-2-56)
Storage temperature	-20 °C to 70 °C
Storage relative humidity	5 to 95% relative humidity, noncondensing (meets IEC 60068-2-56)
Operating shock	30 g, half-sine, 11 ms pulse (meets IEC 60068-2-27; test profile developed in accordance with MIL-PRF-28800F)
Operating vibration	5 Hz to 500 Hz, 0.31 g _{rms} (meets IEC 60068-2-64)
Storage shock	50 g, half-sine, 11 ms pulse (meets IEC 60068-2-27; test profile developed in accordance with MIL-PRF-28800F)
Storage vibration	5 Hz to 500 Hz, 2.46 g _{rms} (meets IEC 60068-2-64; test profile exceeds requirements of MIL-PRF-28800F, Class B)
Altitude	0 to 2,000 m above sea level (at 25 °C ambient temperature)
Pollution degree	2

Compliance and Certifications

Safety Compliance Standards

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1

Note For safety certifications, refer to the product label or the <u>Product</u> <u>Certifications and Declarations</u> section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note For EMC declarations, certifications, and additional information, refer to the Online Product Certification section.

To meet EMC compliance, the following cautions apply:

Caution The SHC68-C68-D4 shielded cables must be used when operating the PXI-6541.

Caution EMC filler panels must be installed in all empty chassis slots.

CE Compliance C E

This product meets the essential requirements of applicable European Directives, as follows:

- 2014/35/EU; Low-Voltage Directive (safety)
- 2014/30/EU; Electromagnetic Compatibility Directive (EMC)
- 2011/65/EU; Restriction of Hazardous Substances (RoHS)
- 2014/53/EU; Radio Equipment Directive (RED)
- 2014/34/EU; Potentially Explosive Atmospheres (ATEX)

Product Certifications and Declarations

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit ni.com/product-certifications, search by model number, and click the appropriate link.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the **Engineering a Healthy Planet** web page at <u>ni.com/environment</u>. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

EU and UK Customers

• Waste Electrical and Electronic Equipment (WEEE)—At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit ni.com/environment/weee.

电子信息产品污染控制管理办法(中国 RoHS)

• ●●● 中国 RoHS— NI 符合中国电子信息产品中限制使用某些有害物质指令(RoHS)。关于 NI 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs_china。(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

- ¹ For module assemblies C and later. Module assemblies A and B have an input impedance of 10 k Ω .
- ² For module assemblies C and later. Module assemblies A and B have an input impedance of 10 k Ω .
- ³ Diode clamps in the design may provide additional protection outside the specified range.
- ⁴ You can apply a delay or phase adjustment to the On Board clock to align multiple devices.
- ⁵ Sample clocks with sources other than STROBE can be exported.
- ⁶ Includes maximum data channel-to-channel skew.
- ⁷ Does not include data channel-to-channel skew, t_{DDCSC}, or t_{SCDDC}.
- ⁸ At the programmed thresholds.
- ⁹ Required at both acquisition voltage thresholds.
- ¹⁰ For module assemblies C and later. Module assemblies A and B have an input impedance of 10 k Ω .
- ¹¹ STROBE cannot be routed to DDC CLK OUT.
- ¹² The source provides the reference frequency for the PLL.
- $\frac{13}{1}$ Maximum limit for generation sessions assumes no scripting instructions.
- ¹⁴ Use scripts to describe the waveforms to be generated, the order in which the waveforms are generated, how many times the waveforms are generated, and how the device responds to Script triggers.
- ¹⁵ Regardless of waveform size, NI-HSDIO allocates waveforms into block sizes of 32 S of physical memory.

- $\underline{^{16}}$ Sample rate dependent. Increasing sample rate increases minimum waveform size.
- $\frac{17}{2}$ Regardless of waveform size, NI-HSDIO allocates at least 128 bytes for a record.
- $\frac{18}{1}$ Each trigger can be routed to any destination except the Pause trigger. The Pause trigger cannot be exported for acquisition sessions.
- $\underline{^{19}}$ Use the Data Active event during generation to determine when the PXI-6541 enters the Pause state.
- $\frac{20}{20}$ Except for the Data Active event, each event can be routed to any destination. The Data Active event can be routed only to the PFI channels.